- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kolagani, Rajeswari (2)
-
Budhani, Ramesh C. (1)
-
Gundlach, Lars (1)
-
Hart, Cacie (1)
-
Houston, David (1)
-
Jungfleisch, M. Benjamin (1)
-
Kumar, Ravinder (1)
-
Nepal, Rajeev (1)
-
Pogue, E. A. (1)
-
Sharma, Vinay (1)
-
Warecki, Zoey (1)
-
Wu, Weipeng (1)
-
Yong, Grace (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Spin-to-charge conversion (S2CC) processes in thin-film heterostructures have attracted much attention in recent years. Here, we describe the S2CC in a 3D topological insulator Bi2Te3 interfaced with an epitaxial film of Fe75Co25. The quantification of spin-to-charge conversion is made with two complementary techniques: ferromagnetic resonance based inverse spin Hall effect (ISHE) at GHz frequencies and femtosecond light-pulse induced emission of terahertz (THz) radiation. The role of spin rectification due to extrinsic effects like anisotropic magnetoresistance (AMR) and planar Hall effects (PHE) is pronounced at the GHz timescale, whereas the THz measurements do not show any detectible signal, which could be attributed to AMR or PHE. This result may be due to (i) homodyne rectification at GHz, which is absent in THz measurements and (ii) laser-induced thermal spin current generation and magnetic dipole radiation in THz measurements, which is completely absent in GHz range. The converted charge current has been analyzed using the spin diffusion model for the ISHE. We note that regardless of the differences in timescales, the spin diffusion length in the two cases is comparable. Our results aid in understanding the role of spin pumping timescales in the generation of ISHE signals.more » « less
-
Hart, Cacie; Warecki, Zoey; Yong, Grace; Houston, David; Kolagani, Rajeswari (, AIP Advances)We report our studies of the thickness dependence of electrical resistivity and lattice constants in strained epitaxial thin films of calcium manganese oxide. Our results indicate the potential of bi-axial lattice mismatch strain as a handle for modulating electrical resistivity. We observe thickness dependence of lattice constants consistent with what is expected for strain relaxation for films thicker than 400 Å. At lower thickness values, anomalies are observed suggestive of reduced oxygen stoichiometry. We observe a remarkable decrease in electrical resistivity with decreasing film thickness. The resistivity of our thinnest films (5–7 nm) is about three orders of magnitude lower than the resistivity of bulk CaMnO3. Resistivity increases as the film thickness increases, along with the progression of strain relaxation. It is noteworthy that the thickness dependence of resistivity we observe in CMO thin films is the opposite of what has been reported for their hole-doped rare earth manganite counterpart La0.67Ca0.33MnO3 (LCMO), where tensile lattice mismatch strain suppresses metallicity, leading to the increase in resistivity with film thickness. We believe that the enhanced conductivity in our thinnest films is related to the possible oxygen deficiency promoted by tensile strain. Recent x-ray absorption measurements have revealed reduced oxygen content and associated changes in Mn valence states in tensile-strained CMO thin films, as also predicted by density functional theory calculations. This report is the first observation of electrical transport behavior possibly indicative of strain–oxygen stoichiometry coupling.more » « less
An official website of the United States government
